學達書庫 > 魏源 > 海國圖志 | 上頁 下頁
勾股相求算法圖說


  按勾股之法,其用甚廣。以之測影,推度山川之高深,平原之廣遠,非勾股莫由而知。今略舉一端以明其法。如圖所繪直線為股,橫線為勾,斜為弦。譬如大股高二丈,大勾長三丈,以股求勾,問小股一尺,該小勾幾何。法置大勾長三丈為實,以大股二丈為法除之,則每尺之股,得小勾各一尺五寸。若股一丈,則得小勾一丈五尺,若大股二丈,則得大勾三丈。又以勾求股,問小勾一尺,得小股幾何。法置大股二丈為實,以大勾三丈為法除之,則每小勾一尺,得小股六寸六分六厘。如問小勾五尺,該小股幾何,法以小勾五尺與大股二丈相乘,得一丈為實。以大勾三丈為法除之,得小股三尺三寸二分三厘。若勾二丈,則得股一丈三尺三寸三分,勾二丈五尺,則得股一丈六尺六寸六分。若勾三丈,則得股二丈,恰符原數。餘可類推。此勾股相求算法之大略。與前篇炮位中線差高算法相同。因恐司炮者不諳勾股算法,難於洞曉,是以中線準則論內,附陳便捷算法,俾人易曉。今仍附此圖以備參考。


學達書庫(xuoda.com)
上一頁 回目錄 回首頁 下一頁