學達書庫 > 史籍 > 宋史 | 上頁 下頁 |
律曆志五(2) |
|
求弦望入轉:因天正十一月經朔加時入轉日及餘秒,以弦策累加之,去命如前,即上弦、望及下弦加時入轉日及餘秒。若以經朔、弦、望小餘減之,各得其日夜半入轉日及餘秒。 求朔弦望入轉朏朒)定數:置所入轉餘,乘其日損益率,樞法而一,所得,以損益其下朏朒積為定數。其四七日下余如初數下,以初率乘之,初數而一,以損益朏朒為定數。若初數已上者,以初數減之,餘乘末率,末數而一,用減初率,餘加朏朒,各為定數。(其十四日下余若在初數已上者,初數減之,餘乘末率,末數而一,為朏定數。) 求朔望定日:各以入氣、入轉朏朒定數朏減朒加經朔、弦、望小余,滿若不足,進退大餘,命甲子,算外,各得定日及餘。若定朔幹名與後朔同名者大,不同者小,其月無中氣者為閏月。(凡注曆,觀朔小餘,如日入分已上者,進一日,朔或當定,有食應見者,其朔不進。弦、望定小餘不滿日出分,退一日,其望定小余雖滿此數,若有交食虧初起在日出已前者,亦如之。有月行九道遲疾,曆有三大二小;若行盈縮累增損之,則有四大三小,理數然也,若俯循常儀,當察加時早晚,隨其所近而進退之,不過三大二小。若正朔有加交,時虧在晦、二正見者,消息前後一兩月,以定大小。) 求定朔弦望加時日所在度:置定朔、弦望約分,副之,以乘其日升降分,一萬約之,所得,升加降減其副,以加其日夜半日度,命如前,各得其日加時日躔黃道宿次。 推月行九道:凡合朔所交,冬在陰曆,夏在陽曆,月行青道;(冬、夏至後,青道半交在春分之宿,當黃道東;立冬、立夏後,青道半交在立春之宿,當黃道東南:至所沖之宿亦如之。)冬在陽曆,夏在陰曆,月行白道;(冬、夏至後,白道半交在秋分之宿,當黃道西;立冬、立夏後,白道半交在立秋之宿,當黃道西北:至所沖之宿亦如之。)春在陽曆,秋在陰曆,月行朱道;(春、秋分後,朱道半交在夏至之宿,當黃道南;立春、立秋後,朱道半交在立夏之宿,當黃道西南;至所沖之宿亦如之。)春在陰曆,秋在陽曆,月行黑道。(春、秋分後,黑道半交在冬至之宿,當黃道北;立春、立秋後,黑道半交在立冬之宿,當黃道東北:至所沖之宿亦如之。)四序月離雖為八節,至陰陽之所交,皆與黃道相會,故月行有九道。各視月所入正交積度,滿象度及分去之,(入交積度及象度並在交會術中。)若在半象以下者為入初限;已上者,複減象度,餘為入末限;用減一百二十五,餘以所入初、末限度及分乘之,滿二十四而一為分,分滿百為度,所得,為月行與黃道差數。距半交後、正交前,以差數為減;距正交後、半交前,以差數為加。(此加減出入六度,單與黃道相較之數,若較赤道,則隨氣遷變不常。)計去冬、夏至以來度數,乘黃道所差,九十而一,為月行與赤道差數。凡日以赤道內為陰,外為陽;月以黃道內為陰,外為陽。故月行宿度,入春分交後行陰曆,秋分交後行陽曆,皆為同名;春分交後行陽曆,秋分交後行陰曆,皆為異名。其在同名,以差數加者加之,減者減之;其在異名,以差數加者減之,減者加之。皆以增損黃道宿積度,為九道宿積度;以前宿九道積度減之,為其九道宿度及分。(其分就近約為少、半、太之數。) 推月行九道平交入氣:各以其月閏日及餘,加經朔加時入交泛日及餘秒,盈交終日去之,乃減交終日及餘秒,即各平交入其月中氣日及餘秒。滿氣策及餘秒去之,余即平交入後月節氣日及餘秒。(因求次交者,以交終日及餘秒加之,滿氣策及餘秒去之,余為平交入其氣日及餘秒,若求其氣朏朒定數,如求朔、弦、望經日術入之,各得所求也。) 求平交入轉朏朒定數:置所入氣餘,加其日夜半入轉餘,以乘其日損益率,樞法而一,所得,以損益其下朏朒積,乃以交率乘之,交數而一,為定數。 求正交入氣:以平交入氣、入轉朏朒定數,朏減朒加平交入氣余,滿若不足,進退其日,即正交入氣日及餘秒。 求正交加時黃道宿度:置正交入氣餘,副之,以乘其日升降分,一百約之,升加降減其副,乃一百乘之,樞法而一,以加其日夜半日度,即正交加時黃道日度及分秒。 求正交加時月離九道宿度:以正交度及分減一百二十五,餘以正交度及分乘之,滿二十四,餘為定差。以差加黃道宿度,仍計去冬、夏至以來度數乘差,九十而一,所得,依名同異而加減之,滿若不足,進退其度,命如前,即正交加時月離九道宿度及分。 推定朔、弦、望加時月離所在度:各置其日加時日躔所在,變從九道,循次相當。凡合朔加時,月行潛在日下,與太陽同度,是為加時月離宿次;(先置朔、弦、望加時黃道宿度,以正交加時黃道宿度減之,餘以加其正交加時九道宿度,命起正交宿度,算外,即朔、弦、望加時所當九道宿度。其合朔加時若非正交,則日在黃道、月在九道各入宿度,雖多少不同,考其去極,若應繩准,故雲月行潛在日下,與太陽同度。)各以弦、望度及分秒加其所當九道宿度,滿宿次去之,命如前,即各得加時九道月離宿次。 求定朔夜半入轉:各視經朔夜半入轉,若定朔大餘有進退者,亦加減轉日,不則因經為定。 求次定朔夜半入轉:因定朔夜半入轉,大月加二,小月加一,餘皆四千七百一十六、秒九千四百六,滿轉周日及餘秒去之,即次定朔夜半入轉;累加一日,去命如前,各得次日夜半轉日及餘秒。 求月晨昏度:以晨昏乘其日轉定分,樞法而一,為晨轉分;減轉定分,餘為昏轉分;乃以朔、弦、望定小餘乘轉定分,樞法而一,為加時分;以減晨昏轉分,餘為前;不足覆減,餘為後;仍前加後減加時月,即晨、昏月所在度。 求朔、弦、望晨昏定程:各以其朔昏定月減上弦昏定月,為朔後定程;以上弦昏定月減望日昏定月,為上弦後定程;以望日晨定月減下弦晨定月,為望後定程;以下弦晨定月減後朔晨定月,為下弦後定程。 求每日轉定度:累計每程相距日轉定分,以減定程為盈;不足,覆減為縮;以相距日均其盈縮,盈加縮減每日轉定分,為每日轉定度及分。 求每日晨昏月:因朔、弦、望晨昏月,加每日轉定度及分,盈縮次去之,為每日晨昏月。(凡注曆,自朔日注昏,望後次日注晨。)已前月度並依九道所推,以究算理之精微。如求其速要,即依後術求之。 推天正經朔加時平行月:置歲周,以天正閏餘減之,餘以樞法除之為度,不盡,退除為分秒,即天正經朔加時平行月積度。 求天正十一月定朔夜半平行月:置天正經朔小余,以平行分乘之,樞法而一為度,不盡,退除為分秒,所得,為加時度;用減天正經朔加時平行月,即經朔晨前夜半平行月,(其定朔有進退者,即以平行度分加減之。)即天正十一月定朔晨前夜半平行月積度。 求次定朔夜半平行月:置天正定朔夜半平行月,大月加三十五度八十分、秒六十一,小月加二十二度四十三分、秒七十三半,滿周天度分去之,即每月定朔晨前夜半平行月積度及分。 求定望夜半平行月:計定朔距定望日數,以乘平行度及分秒,所得,加其定朔夜半平行月積度及分,即定望夜半平行月積度及分。 求天正定朔夜半入轉:因天正經朔夜半入轉,若定朔大餘有進退者,亦進退之,不則因經而定,即所求年天正定朔晨前夜半入轉及其餘;以樞法退除為約分及秒,皆一百為母。 求定望及次定朔夜半入轉:因天正定朔夜半入轉及分秒,以朔望相距日累加之,滿轉周日二十七及分五十五、秒四十六去之,即各得定望及次定朔晨前夜半入轉日及分秒。 求定朔望夜半定月:置定朔、望夜半入轉分,乘其日增減差,一百約之為分,分滿百為度,增減其下遲疾度,為遲疾定度,遲減疾加夜半平行月,為朔望夜半定月;以冬至加時黃道日度加而命之,即朔望夜半月離宿次。(其入轉若在四七日下,如求朏朒術入之,即得所求。) 求朔望定程:以朔定月減望定月,為朔後定程;以望定月減次朔定月,即望後定程。 求朔望轉積:計朔至望轉定分,為朔後轉積;自望至次朔亦如之,為望後轉積。 求每日夜半月離宿次:各以其朔、望定程與轉積相減,余為程差;以距後程日數除之,為日差;加歲轉定分,為每日行度及分;(定程多,加之;定程少,減之。)以每日行度及分累加朔、望夜半宿次,命之,即每日晨前夜半月離宿次。(若求晨昏月,以其日晨昏分乘其日轉定度及分,樞法而一,以加夜半月,即晨昏月所在度及分。若以四象為程,兼求弦日平行積餘,各依次入之。若以九終轉定分累加之,依宿次命之,亦得所求。) 步晷漏 二至限:一百八十二、六十二分。 一象:九十一、三十二分。 消息法:七千八百七十三。 辰法:八百八十二半,八刻三百五十三。 昏明刻:一百二十九半。 昏明餘數:二百六十四太。 冬至陽城晷景:一丈二尺七寸一分半;初限六十二,末限一百二十六、十二分。 夏至陽城晷景:一尺四寸七分,小分八十;初限一百二十六、十二分,末限六十二。 求陽城晷景入二至後日數:各計入二至後日數,乃如半日之分五十,又以二至約分減之,即入二至後來午中日數及分。 求陽城晷景入初末限定日及分:置其日中入二至後求日數及分,以其日午中入氣盈縮分盈加縮減之,各如初限已下為在初限;已上,覆減二至限,餘為入末限定日及分。(求盈縮分,置入二至後來午中日數及分,以氣策及約分除之為氣數,不盡,為入氣以來日數及分;加其氣數,命以冬、夏至,算外,即其日午中所入氣日及分。置所入氣日約分,如出朏朒術入之,即得所求。) 求陽城每日中晷定數:置入二至初、末限定日及分,如冬至後初限、夏至後末限者,以初、末限日及分減一百四十六,餘退一等,為定差;又以初、末限日及分自相乘,以乘定差,滿六千六百四十五為尺,不滿,退除為寸分,命曰晷差;以晷差減冬至晷數,即其日陽城午中晷景定數。如冬至後末限、夏至後初限者,以初、末限日及分減一千二百一十七,餘再退,為定差;亦以初末限日及分自相乘,以乘定差,滿二萬四千九百三十,餘為尺,不滿,退除為寸分,命曰晷差;以晷差加夏至晷數,即其日陽城中晷定數。(若以中積求之,即得每日晷影常數。) 求每日消息定數:以所入氣日及加其氣下中積,一象已下,自相乘;已上者,用減二至限,餘亦自相乘,皆五因之,進二位,以消息法除之,為消息常數;副置常數,用減五百二十九半,餘乘其副,以二千三百五十除之,加於常數,為消息定數。(冬至後為消,夏至後為息。) 求每日黃道去極度及赤道內外度:置其日消息數,十六乘之,以三百五十三除為度,不滿,退除為分,所得,在春分後加六十七度三十一分,秋分後減一百一十五度三十一分,即每日黃道去極度分度。又以每日黃道去極度及分,與一象度相減,餘為赤道內、外度。若去極度少,為日在赤道內;去極度多,為日在赤道外,即各得所求。(其赤道內外度,為黃、赤道相去度分。) 求每日晨昏分日出入分及半晝分:以每日消息定數,春分後加一千八百五十三少,秋分後減二千九百一十二少,各為每日晨分;用減樞法,為昏分。以昏明餘數加晨分,為日出分;減昏分,為日入分;以日出分減半法,為晝分。 求每日距中度:置每日晨分,三因,進二位,以八千六百九十八除為度,不滿,退除為分,即距子度;用減半周天,餘為距中度;又倍距子度,五除,為每更差度及分。 求夜半定漏:置晨分,進一位,以刻法除為刻,不滿為分,即每日夜半定漏。 求晝夜刻及日出入辰刻:倍夜半定漏,加五刻,為夜刻;減一百刻,餘為晝刻。以昏明刻加夜半定漏,命子正,算外,即日出辰刻;以晝刻加之,命如前,即日入辰刻。 求更籌辰刻:倍夜半定漏,二十五而一,為籌差刻;五乘之,為更差刻。以昏明刻加日入辰刻,即甲夜辰刻;以更籌差刻累加之,滿辰刻及分去之,各得每更籌所入辰刻及分。 求每日昏明度:置距中度,以其日昏後夜半赤道日度加而命之,即昏中星所格宿次;又倍距子度,加昏中星命之,即曉中星所格宿次。 求五更中星:皆以昏中星為初更中星,以每更差加而命之,即乙夜所格宿次;累加之,各得五更中星所格宿次。 求九服距差日:各於所在立表候之,若地在陽城北,測冬至後與陽城冬至晷景同者,累冬至後至其日,為距差日;若地在陽城南,測夏至後與陽城夏至晷景同者,累夏至後至其日,為距差日。 求九服晷景;若地在陽城北冬至前後者,置冬至前後日數,用減距差日,為餘日;以餘日減一百四十六,餘退一等,為定差;以餘日自相乘而乘之,滿六千六百四十五除之為尺,不滿,退除為寸分,加陽城冬至晷景,為其地其日中晷常數。若冬至前後日多於距差日,即減去距差日,余依陽城法求之,各其地其日中晷常數。若地在陽城南夏至前後者,以夏至前後日數減距差日,為餘日,以減一千二百一十七,餘再退,為定差;以餘日自相乘而乘之,滿二萬四千九百三十為尺,不滿,退除為寸分,以減陽城夏至晷數,即其地其日中晷常數;如不及減,乃減去陽城夏至日晷景,餘即晷在表南也。若夏至前後日多於距差日,即減去距差日,余依陽城法求之,各其地其日中晷常數。(若求中晷定數,先以盈縮分加減之,乃用法求之,即各得其地其日中晷定數。) 求九服所在晝夜漏刻:冬、夏至各於所在下水漏,以定其處二至夜刻數,相減為冬、夏至差刻。乃置陽城其日消息定數,以其處二至差刻乘之,如陽城二至差刻二十而一,所得,為其地其日消息定數。乃倍消息定數,進一位,滿刻法約之為刻,不滿為分,乃加減其處二至夜刻,(秋分後、春分前,減冬至夜刻;春分後、秋分前,加夏至夜刻。)為其地其日夜刻;用減一百刻,餘為晝刻。(求日出入辰刻及距中度五更中星,皆依陽城法。) |
學達書庫(xuoda.com) |
上一頁 回目錄 回首頁 下一頁 |