學達書庫 > 史籍 > 新唐書 | 上頁 下頁
曆志四(2)


  ○四曰步月離術

  轉終六百七十萬一千二百七十九。

  轉終日二十七,餘千六百八十五,秒七十九。

  轉法七十六。

  轉秒法八十。

  以秒法乘朔積分,盈轉終去之;餘複以秒法約,為入轉分;滿通法,為日。命日算外,得天正經朔加時所入。因加轉差日一、餘二千九百六十七、秒一,得次朔。以一象之策,循變相加,得弦、望。盈轉終日及餘秒者,去之。各以經朔、弦、望小餘減之,得其日夜半所入。

  各置朔、弦、望所入轉日損益率,並後率而半之,為通率。又二率相減,為率差。前多者,以入餘減通法,餘乘率差,盈通法得一,並率差而半之;前少者,半入餘,乘率差,亦以通法除之:為加時轉率。乃半之,以損益加時所入,余為轉餘。其轉余,應益者,減法;應損者,因餘。皆以乘率差,盈通法得一,加於通率,轉率乘之,通法約之,以朓減、朒加轉率,為定率。乃以定率損益朓朒積,為定數。(其後無同率者,亦因前率。應益者,以通率為初數,半率差而減之;應損者,即為通率。其損益入餘進退日,分為二日,隨余初末,如法求之,所得並以損益轉率。此術本出《皇極曆》,以究算術之微變。若非朔、望有交者,直以入餘乘損益率,如通法而一,以損益朓朒,為定數。)

  七日、(初數二千七百一,末數三百三十九。)十四日、(初數二千三百六十三,末數六百七十七。)二十一日、(初數二千二十四,末數千一十六。)二十八日,(初數千六百八十六,末數千三百五十四。)以四象約轉終,均得六日二千七百一分。就全數約為九分日之八。各以減法,餘為末數。乃四象馴變相加,各其所當之日初、末數也。視入轉余,如初數已下者,加減損益,因循前率;如初數以上,則反其衰,歸於後率雲。

  各置朔、弦、望大小餘,以入氣、入轉朓朒定數,朓減、朒加之,為定朔、弦、望大小餘。定朔日名與後朔同者,月大;不同者,小;無中氣者,為閏月。(凡言夜半,皆起晨前子正之中。若注曆,觀弦、望定小餘,不盈晨初餘數者,退一日。其望有交、起虧在晨初已前者,亦如之。又月行九道遲疾,則有三大二小以日行盈、縮累增、損之,則容有四大三小,理數然也。若俯循常儀,當察加時早晚,隨其所近而進退之,使不過三大二小。其正月朔有交、加時正見者,消息前後一兩月,以定大小,令虧在晦、二。)定朔、弦、望夜半日度,各隨所直日度及餘分命之。乃列定朔、弦、望小餘,副之。以乘其日盈、縮分,如通法而一,盈加、縮減其副。以加夜半日度,各得加時日度。

  凡合朔所交,冬在陰曆、夏在陽曆,月行青道;(冬至、夏至後,青道半交在春分之宿,當黃道東。立冬、立夏後,青道半交在立春之宿,當黃道東南。至所沖之宿,亦如之。)冬在陽曆、夏在陰曆,月行白道;(冬至、夏至後,白道半交在秋分之宿,當黃道西。立冬、立夏後,白道半交在立秋之宿,當黃道西北。至所沖之宿,亦如之。)春在陽曆、秋在陰曆,月行朱道;(春分、秋分後,朱道半交在夏至之宿,當黃道南。立春、立秋後,朱道半交在立夏之宿,當黃道西南。至所沖之宿,亦如之。)春在陰曆,秋在陽曆,月行黑道。(春分、秋分後,黑道半交在冬至之宿,當黃道北,立春、立秋後,黑道半交在立冬之宿,當黃道東北。至所沖之宿,亦如之。)四序離為八節,至陰陽之所交,皆與黃道相會,故月有九行。各視月交所入七十二候距交初中黃道日度,每五度為限,亦初數十二,每限減一,數終於四、乃一度強,依平。更從四起,每限增一,終於十二,而至半交,其去黃道六度。又自十二,每限減一,數終於四,亦一度強,依平。更從四起,每限增一,終於十二,複與日軌相會。各累計其數,以乘限度,二百四十而一,得度。不滿者,二十四除,為分,(若以二十除之,則大分,以十二為母。)為月行與黃道差數。距半交前後各九限,以差數為減;距正交前後各九限,以差數為加。(此加減出入六度,單與黃道相較之數。若較之赤道,則隨氣遷變不常。)計去冬至、夏至以來候數,乘黃道所差,十八而一,為月行與赤道差數。凡日以赤道內為陰,外為陽;月以黃道內為陰,外為陽。故月行宿度,入春分交後行陰曆、秋分交後行陽曆,皆為同名。若入春分交後行陽曆、秋分交後行陰曆,皆為異名。其在同名,以差數為加者加之,減者減之;若在異名,以差數為加者減之,減者加之。皆以增損黃道度,為九道定度。

  各以中氣去經朔日算,加其入交泛,乃以減交終,得平交入中氣日算。滿三元之策去之,餘得入後節日算。(因求次交者,以交終加之,滿三元之策去之,得後平交入氣日算。)

  各以氣初先後數先加、後減之,得平交入定氣日算。倍六爻乘之,三其小餘,辰法除而從之,以乘其氣損益率,如定氣辰數而一,所得以損益其氣朓朒積,為定數。

  又置平交所入定氣餘,加其日夜半入轉餘,以乘其日損益率,滿通法而一,以損益其日朓朒積,交率乘之,交數而一,為定數。乃以入氣入轉朓朒定數,朓減、朒加平交入氣余,滿若不足,進退日算,為正交入定氣日算。其入定氣餘,副之,乘其日盈縮分,滿通法而一,以盈加、縮減其副,以加其日夜半日度,得正交加時黃道日度。以正交加時度餘減通法,餘以正交之宿距度所入限數乘之,為距前分。置距度下月道與黃道差,以通法乘之,減去距前分,余滿二百四十除,為定差;不滿者一退為秒。以定差及秒加黃道度、余,仍計去冬至、夏至已來候數乘定差,十八而一,所得依名同異而加減之,滿若不足,進退其度,得正交加時月離九道宿度。

  各置定朔、弦、望加時日度,從九道循次相加。凡合朔加時,月行潛在日下,與太陽同度,是謂離象。(先置朔、弦、望加時黃道日度,以正交加時所在黃道宿度減之,餘以加其正交九道宿度,命起正交宿度算外,即朔、弦、望加時所當九道宿度也。其合朔加時,若非正交,則日在黃道,月在九道,各入宿度雖多少不同,考其去極,若應繩准。故雲:月行潛在日下,與太陽同度。)以一象之度九十一、餘九百五十四、秒二十二半為上弦,兌象。倍之,而與日沖,得望,坎象。參之,得下弦,震象。各以加其所當九道宿度,秒盈象統從余,余滿通法從度,得其日加時月度。(綜五位成數四十,以約度餘,為分;不盡者,因為小分。)

  視經朔夜半入轉,若定朔大餘有進退者,亦加、減轉日。否則因經朔為定。累加一日,得次日,各以夜半入轉餘乘列衰,如通法而一,所得以進加、退減其日轉分,為月轉定分。滿轉法,為度。

  視定朔、弦、望夜半入轉,各半列衰以減轉分。退者,定餘乘衰,以通法除,並衰而半之;進者,半餘乘衰,亦以通法除:皆加所減。乃以定餘乘之,盈通法得一,以減加時月度,為夜半月度。各以每日轉定分累加之,得次日。若以入轉定分,乘其日夜漏,倍百刻除,為晨分。以減轉定分,餘為昏分。望前以昏、望後以晨加夜半度,各得晨、昏月。

  各視每日夜半入陰陽曆交日數,以其下屈伸積,月道與黃道同名者,加之;異名者,減之。各以加、減每日辰昏黃道月度,為入宿定度及分。

  ○五曰步軌漏術

  爻統千五百二十。

  象積四百八十。

  辰八刻百六十分。

  昏、明二刻二百四十分。

  各置其氣消息衰,依定氣所有日,每以陟降率陟減、降加其分,滿百從衰,各得每日消息定衰。其距二分前後各一氣之外,陟、降不等,皆以三日為限。雨水初日,降七十八;初限,日損十二;次限,日損八;次限,日損三;次限,日損二;次限,日損後。清明初日,陟一;初限,日益一;次限,日益二;次限,日益三;次限,日益八;末限,日益十九。處暑初日,降九十九;初限,日損十九;次限,日損八;次限,日損三;次限,日損二;末限,日損一。寒露初日,陟一;初限,日益一;次限,日益二;次限,日益三;次限,日益八;末限,日益十二。各置初日陟降率,依限次損益之,為每日率。乃遞以陟減、降加氣初消息衰,各得每日定衰。

  南方戴日之下,正中無晷。自戴日之北一度,乃初數千三百七十九。自此起差,每度增一,終於二十五度,計增二十六分。又每度增二,終於四十度。又每度增六,終於四十四度,增六十八。又每度增二,終於五十度。又每度增七,終於五十五度。又每度增十九,終於六十度,增百六十。又每度增三十三,終於六十五度。又每度增三十六,終於七十度。又每度增三十九,終於七十二度,增二百六十。又度增四百四十。又度增千六十。又度增千八百六十。又度增二千八百四十。又度增四千。又度增五千三百四十。各為每度差。因累其差,以遞加初數,滿百為分,分十為寸,各為每度晷差。又累其晷差,得戴日之北每度晷數。

  各置其氣去極度,以極去戴日度五十六及分八十二半減之,得戴日之北度數。各以其消息定衰所直度之晷差,滿百為分,分十為寸,得每日晷差。乃遞以息減、消加其氣初晷數,得每日中晷常數。

  以其日處在氣定小餘,爻統減之,餘為中後分。不足減,反相減,為中前分。以其晷差乘之,如通法而一,為變差。以加、減中晷常數,(冬至後,中前以差減,中後以差加;夏至後,中前以差加,中後以差減。冬至一日,有減無加;夏至一日,有加無減。)得每日中晷定數。

  又置消息定衰,滿象積為刻,不滿為分。各遞以息減、消加其氣初夜半漏,得每日夜半漏定數。其全刻,以九千一百二十乘之,十九乘刻分從之,如三百而一,為晨初餘數。

  各倍夜半漏,為夜刻。以減百刻,餘為晝刻。減晝五刻以加夜,即晝為見刻,夜為沒刻。半沒刻加半辰,起子初算外,得日出辰刻。以見刻加而命之,得日入。(置夜刻,五而一,得每更差刻。又五除之,得每籌差刻。以昏刻加日入辰刻,得甲夜初刻。又以更籌差加之,得五夜更籌所當辰。其夜半定漏,亦名晨初夜刻。)

  又置消息定衰,滿百為度,不滿為分。各遞以息減、消加氣初去極度,各得每日去極定數。

  又置消息定衰,以萬二千三百八十六乘之,如萬六千二百七十七而一,為度差。差滿百為度。各遞以息加、消減其氣初距中度,得每日距中度定數。倍之,以減周天,為距子度。

  置其日赤道日度,加距中度,得昏中星。倍距子度,以加昏中星,得曉中星。命昏中星為甲夜中星,加每更差度,得五夜中星。

  凡九服所在,每氣初日中晷常數不齊。使每氣去極度數相減,各為其氣消息定數。因測其地二至日晷,(測一至可矣,不必兼要冬夏。)于其戴日之北每度晷數中,較取長短同者,以為其地戴日北度數及分。每氣各以消息定數加減之,(因冬至後者,每氣以減。因夏至後者,每氣以加。)得每氣戴日北度數。各因所直度分之晷數,為其地每定氣初日中晷常數。(其測晷有在表南者,亦據其晷尺寸長短與戴日北每度晷數同者,因取其所直之度,去戴日北度數。反之,為去戴日南度。然後以消息定數加減之。)

  二至各於其地下水漏以定當處晝夜刻數。乃相減,為冬、夏至差刻。半之,以加、減二至晝夜刻數,為定春、秋分初日晝夜刻數。乃置每氣消息定數。以當處差刻數乘之,如二至去極差度四十七分,八十而一,所得依分前、後加、減初日晝夜漏刻,各得余定氣初日晝夜漏刻。

  置每日消息定衰,亦以差刻乘之,差度而一,所得以息減、消加其氣初漏刻,得次日。(其求距中度及昏明中星日出入,皆依陽城法求之。仍以差刻乘之,差度而一,為今有之數。)若置其地春、秋定日中晷常數與陽城每日晷數,較其同者,因其日夜半漏亦為其地定春、秋分初日夜半漏。求余定氣初日,亦以消息定數依分前、後加、減刻分,(春分後以減,秋分後以加。)滿象積為刻。求次日,亦以消息定衰,依陽城術求之。(此術究理,大體合通。然高山平川,視日不等。較其日晷,長短乃同。考其水漏,多少殊別。以茲參課,前術為審。)


學達書庫(xuoda.com)
上一頁 回目錄 回首頁 下一頁