學達書庫 > 史籍 > 清史稿 | 上頁 下頁 |
疇人傳二(1) |
|
李潢,字雲門,鐘祥人。乾隆三十六年進士,由翰林官至工部左侍郎。博綜群書,尤精算學,推步律呂,俱臻微妙。著九章算術細草圖說九卷,附海島算經一卷,共十卷。 其自序重差圖雲:「圖九,望遠,海島舊有圖解,餘八圖今所補也。同式形兩兩相比,所作四率,二三率相乘,與一四率相乘同積。如欲作圖明之,第取一三率聯為一邊,又取二四率聯為一邊,作相乘長方圖之,自然分為四冪。又以斜弦界為同式句股形各二,則形勢驗矣。舊圖於形外別作同積二方,至兩形相去遼遠者,又必宛轉通之,皆可不必也。圖中以四邊形、五邊形立說,似與句股不類,然於本形外補作句股形,則亦句股也。四率比例法,在九章粟米謂之今有,一為所有率,二為所求率,三為所有數,四為所求數,在句股則統目之為率。劉氏注雲:『句率股率,見句見股者是也。』今祗雲同式相比者,取省易耳,異乘同除則一也。」書甫寫定,潢即病。俟吳門沈欽裴算校,方可付梓。越八年,其甥程矞采家為之校刊,以成其志。 九章初經東原戴氏從永樂大典中錄出,一刻于曲阜孔氏,再刻于常熟屈氏,悉依戴氏原校本刊刻。其時古籍甫顯,校訂較難,不無間有扞格,自是天下之習九章者,莫不家弆一編,奉為圭臬。而劉徽九章亦從此有善本矣。潢又嘗因古算經十書中,九章之外最著者,莫如王孝通之輯古。唐制開科取士,獨輯古四條限以三年,誠以是書隱奧難通。世所傳之長塘鮑氏、曲阜孔氏、羅江李氏各刻本,又悉依汲古閣毛影宋本,祗有原術文而未詳其法,且複傳寫脫誤。雖經陽城張氏以天元一術推演細草,但天元一術創自宋、元時人,究在王氏後,似非此書本旨。爰本九章古義,為之校正,凡其誤者糾之,闕者補之,著考注二卷。以明斜袤廣狹割截附帶分並虛實之原,務如其術乃止。稿未成,潢歿後,為南豐劉衡授其鄉人,以西士開方法增補算草,並附圖解,刻於江西省中,喧賓奪主,殊亂其真。矞採取江西刻本削去圖草,仍以原考注刊佈。 武進李兆洛為之序,曰:「輯古何為而作也?蓋闡少廣、商功之蘊而加精焉者也。商功之法,廣袤相乘,又以高若深乘之為立積,今轉以積與差求廣袤高深,所求之數,最小數也。曷為以最小數為所求數?曰,求大數,則實方廉隅,正負雜糅。求小數,則實常為負,方廉隅常為正也。觀台羨道,築堤穿河,方倉圓囤,芻甍輸粟,其形不一,概以從開立方除之何也?曰,一以貫之之理也。物生而後有象,象而後有滋,滋而後有數。斜解立方,得兩巉堵,一為陽馬,一為鱉臑。陽馬居二,鱉臑居一,不易之率也。今于平地之余續狹斜之法,無論為巉堵、為陽馬、為鱉臑,皆作立積。觀其立積內不以所求數乘者為減積,以所求數一乘者為方法,再乘者為廉法,所求數再自乘為立方,即隅法也。從開立方除之,得所求數。若繪圖於紙,令廣袤相乘,以所求數從橫截之。剖平冪為若干段,又以截高與所求數乘之。分立積為若干段,若者為減積,若者為方,若者為廉,若者為隅,條段分明,歷歷可指。作者之意,不煩言而解矣。其雲廉母自乘為方母,廉母乘方母為實母者之分,開方之要術也。先生於是書立法之根,如鋸解木,如錐劃地,又複補正脫誤,條理秩然,信王氏之功臣矣!爰述大旨,以告世之習是書者,無複苦其難讀雲。」 汪萊,字孝嬰,號衡齋,歙縣人。年十五,補博士弟子。弱冠後,讀書于吳葑門外,慕其鄉江文學永、戴庶常震、金殿撰榜、程徵君易疇學,力通經史百家及推步曆算之術。嘉慶十二年,以優貢生入都,考取八旗官學教習,會禦史徐國楠奏請續修天文、時憲二志,經大學士首舉萊與徐准宜、許沄入館纂修。十四年,書成。議敘,以本班教職用,選授石埭縣訓導。十八年,應省試,得疾歸,卒於官,年四十有六。先是十一年夏,黃河啟放王營減壩,正溜直注張家河,會六塘河歸海。兩江督臣奉上命,查量雲梯關外舊海口與六塘河新海口地勢高下,延萊測算,蓋其精算之名,久為官卿所知。曾制渾天、簡平、一方各儀器觀測。 與郡人巴樹谷最友善,客江、淮間,又與焦孝廉循、江上舍藩、李秀才銳,辯論宋秦九韶、元李冶立天元一及正、負開方諸法。天性敏絕,極能攻堅,不肯苟於著述。凡所言,皆人所未言,與夫人所不能言。 嘗以古書八線之制,終於三分取一,用益實歸除法求之,其一表之真數,僅得十之二。因悟得五分之一通弦與五分之三通弦交錯為三角形,比例立法,以取五分之一之通弦,而弦切之數益密。梅氏環中黍尺,有以量代算之術,惟求倚平儀外周之兩角,而縮于內半周之角未詳。其法較易,因立新術,量取不倚外周之角度,而三角之量法乃全。堆垛有求平三角、立三角、尖堆積法,不及三乘方以上,又複推而廣之,自三乘、四乘以上之尖堆,皆可由根知積。並及諸物遞兼之法,以補古九章所未備。 又糾正梅文穆公句股知積術,及指識天元一,正、負開方之可知、不可知。其糾正句股知積術也,文穆赤水遺珍稱:「有句股積及股弦和較求句股,向無其術,苦思力索,立法四條。」其門人丁維烈又造減縱翻積開三乘方法,文穆許之。萊謂:「句股形等積、等弦和,帶縱立方形等基、等高闊和,皆有兩形互易。如句二十,股二十一,弦二十九,句弦和四十九,句股積二百一十。若句十二,股三十五,弦三十七,句弦積亦四十九,句股積亦二百一十。設問者暗執一形,則對者交盲兩數。梅、丁諸公法成而不可用,蓋兩句弦較,與一句弦和,恒為連比例之三率。其兩句弦較,即首、末二率;兩較減一和之餘,即中率;而句弦和必為三率並。遂創立有兩積相等、兩句弦和相等、求兩句股形之法。以四倍句股積自乘,句弦和除之,為帶縱長立方積。以句弦和為縱,開得數為兩句弦較之中率,自乘為帶縱平方積。又以中率與句弦和相減為長闊和,求得長闊兩根為兩句股較,用求兩句股形各數。又同積之邊,彼此可互,三次之乘,先後可通,故四倍句股積自乘,即兩形之倍句相乘為底,兩形之股相乘為高,即猶以中末乘首。中化為中率,再乘為立方三率,並為帶縱。由是推得立方形兩高數恒為首末二率,高闊和恒為三率,並數與等積、等弦和之兩弦較及弦和絲毫無異。如高九闊十,高闊和十九,立方積九百。若高四闊十五,高闊和亦十九,立方積亦九百,其數莫不由兩形相引而出。故其法即命積為帶縱長立方積,以高闊和為所帶之縱。用帶縱長立方法開得本方根,為兩形高數之中率。與高闊和相減,餘為帶縱之平方長闊和。中率自乘,為帶縱平方積。用帶縱平方長闊和法開之,得長闊一根,為兩形之兩高數。兩高與和相減,為兩闊數。」 其指識正、負開方也,「元李冶傳洞淵九容術,撰測圓海鏡、益古演段,以明天元如積相消,其究必用正、負開方,互詳于宋秦九韶數學九章。梅文穆公雖指天元一為西人借根方所由來,而正、負開方則未有闡明者。元和李秀才銳特為讎校,謂少廣一章,得此始貫於一。好古之士,翕然相從。萊獨推其有可知、有不可知。如測圓海鏡邊股第五問『圜田求徑二百四十步與五百七十六步共數』,而李仁卿專以二百四十為答。數學九章田域第二題『尖田求積二百四十步與八百四十步共數』,而秦道古專以八百四十為答。乃自二乘方以下,縷析推之,得九十五條。凡幾根數為帶縱長闊較則可知,為帶縱長闊和則不可知。又推得幾真數少,幾根數又多,幾平方與一立方積等多少雜糅,和較莫定。立法以審之,以幾平方數用幾立方數除之,得數乘幾根數,以較幾真數。若少於真數,則以幾平方為高闊較,是為可知。若多於真數,則或幾平方為通分法,三母總數、幾真數為三母維乘之共數,幾根數為通分之共子,如二、如六、如十二。設真數一百四十四,少二百八,根數多二十,平方積與一立方積相等,則三數皆同,是為不可知。」 蓋以一答為可知,不止一答為不可知。故李秀才銳跋其書,括為三例以證明之。謂:「隅實同名者不可知;隅實異名,而從廉正負不雜者可知;隅實異名,而從廉正負相雜,其從翻而與隅同名者可知,否則不可知。隅實異名,即帶縱之長闊較也,較僅一答;隅實同名,即帶縱之長闊和也,和則不止一答。」銳以隅實同名、異名,明一答與不止一答;萊以長闊、和較,明可知、不可知,其義一也。著有衡齋算學七冊,考定通藝錄磬氏倨句解一冊。 陳傑,字靜弇,烏程諸生。考取天文生,任欽天監博士,供職時憲科兼天文科,司測量。累官國子監算學助教。道光十九年,謝病歸,卒於家。生平邃于算學,尤神明於比例之用。初著輯古算經細草一卷,後十餘年,又為之指畫形象,成圖解三卷;又博采訓詁,考正其傳寫之舛訛,稽合各本之同異,別成音義一卷。 其自述比例言有曰:「比例之法,昉自九章,傳由西域,在古法曰異乘同除,在西法曰比例等。假如甲有錢四百,易米二鬥,問乙有錢六百,易米幾何?答曰三鬥。法以乙錢為實,甲米乘之,得數,甲錢除之,即得。錢與米異名相乘,與錢同名相除,故謂之異乘同除,此古法也。以甲錢比甲米,若乙錢與乙米。凡言以者一率,言比者二率,言若者三率,言與者四率。二三相乘,一率除之,得四率,此西法也。古法元、明時中土幾以失傳,不知何時流入西域。明神宗時,西人利瑪竇來中國,出其所著算書,中人矜為創獲,其實所用皆古法,但異其名色耳。茲以西人名色解王氏,固取其平近,亦以名中、西之合轍也。」 又有論曰:「二十一史律志無不用比例者,他如九章、緝古、十種算書,多用比例,無如古人總不言比例。如緝古第二問,求均給積尺,欲以本體求又一形之體,忽取兩面冪之數,一用以乘,一用以除,而得數。又第九問求員囤,第十問求員窖,忽以周徑乘除,即如方亭法求之,諸數悉得。走作圖解,審諦久之,而始知為比例,乃明言比例以揭之。嗣是而閱古算書者,罔弗比例矣。」 又自道光以來,嘗親在觀象臺督率值班天文生頻年實測黃、赤大距為二十三度二十七分,未經奏明,故當時未敢用。迨甲辰歲修儀象考成續編,監臣即取此數上之,而欽定頒行焉。 晚年所譔為算法大成,上編十卷,首加、減、乘、除,次開方、句股,次比例、八線,次對數,次平三角、弧三角。門分類別,皆先列舊法,而以新法附之,圖說理解,不憚反覆詳明, 專為引誘初學設也。下編十卷,則有目無書。其言曰:「算法之用多端,第一至要為治曆,故下編言在官之事,先治曆,次出師,次工程錢糧,次戶口鹽司,次堆積丈量;儒者則考據經傳,下及商賈庶民,則貲本營運,市廛交易,持家日用,凡事無钜細,各設題為問答,以明算法之用,蓋如此之廣雲。」下編似未成。其門人丁兆慶、張福僖均以算名。 兆慶,字寶書,歸安人。沉潛好學,為項學正兩邊夾角逕求對角新法圖說,謂其講解明晰,戛戛獨造。 福僖,字南坪,烏程諸生。精究小輪之理,著有慧星考略。 時曰淳,字清甫,嘉定人。精算術。發明古人術意,無不入微。咸豐末,與長沙丁取忠同客胡林翼幕府,每與商榷數理,見丁氏數學拾遺之百雞術,謂與二色方程暗合。因為廣衍,立二十八題,以「舊學商量加邃密、新知培養轉深沉」十四字識其上下,為十四耦。諸題皆借方程為本術,並述大衍求一術以博其趣,作百雞術衍二卷。 自序略曰:「張丘建算經雞翁雞母題問,甄、李兩注及劉孝孫草,皆未達術意,不可通。近焦理堂所釋尤誤。讀吾友丁君果臣數學拾遺,設術與二色方程暗合,乃通法也。駱氏藝遊錄用大衍求一術,以大小較求中數,取徑頗巧,然遇較除共較實適盡者,則不可求。方程術則遇法除實得中數,不盡者以分母與減率相求而齊同之,無不可得。駱氏殆未知有方程本術耳。夫題祗本經一術,算理之微妙,不如孫子不知數一問,而術文各隱秘。彼則但舉用數,此亦僅著加減三率,于前半段取數之法皆闕如。豈古人不傳之秘,必待學者深思而自得乎?孫子求一術,至宋秦道古發之,獨是題襲謬傳訛,無借方程以問途者。曰淳蓄疑既久,今年春與果臣連榻鄂城,複一商榷,別後數月乃通之。怡然渙然,了無滯凝,亦窮愁中一快事也。因衍方程術為數學拾遺補,求負數法及加減率求答數法,附述求一術為藝遊錄補。以中小較求大數法,及大中較、大小較互求得中數、小數法,引伸鉤索,溫故知新,庶足以大暢厥旨乎!易翁、母、雛為大、中、小,設數不必以百,而統以百雞命之者,識斯術所自昉也。」 李銳,字尚之,元和諸生。幼開敏,有過人之資。從書塾中檢得算法統宗,心通其義,遂為九章、八線之學。因受經于錢大昕,得中、西異同之奧,于古曆尤深。自三統以迄授時,悉能洞澈本原。 嘗謂:「三統,世經稱殷術,以元帝初元二年為紀首,是年歲在甲戌。推而上之,一千五百二十歲而歲值甲寅為元首,又上四千五百六十年而歲複甲寅為上元。以此積年,用四分上推,太初元年得至朔同日,而中餘四分日之三,朔餘九百四十分之七百五,故太初術虧四分日之三,去小餘七百五分也。《漢書》載三統而不著太初,其實一月之日,二十九日八十一分日之四十三,是日法、月法與三統同。賈逵稱太初術鬥二十六度三百八十五分,是統法周天又與三統同。蓋四分無異于太初,而太初亦得謂之三統。鄭注召誥,周公居攝五年二月三月,當為一月二月,不雲正月者,蓋待治定制禮,乃正言正月故也。江徵君聲、王光祿鳴盛以為據洛誥十二月戊辰逆推之,其說未核。今案鄭君精于步算,此破二月三月為一月二月,以緯候入蔀數,推知上推下驗,一一符合,不僅檢勘一二年間事也。」 因據詩大明疏,鄭注尚書文王受命,武王伐紂時日皆用殷曆甲寅元,遂從文王得赤雀受命年起,以乾鑿度所載之積年推算,是年入戊午蔀,二十九年歲在戊午,與劉歆所說殷曆周公六年始入戊午蔀不同。歆謂文王受命九年而崩,崩後四年武王克殷,後七年而崩,明年周公攝政元年,較鄭少一年。又載召誥、洛誥俱攝政七年事,其年二月乙亥朔,三月甲辰朔,十二月戊辰朔,並與鄭不合。乃以推算各年及一月二月,排比干支,分次上下,著召誥日名考,此融會古曆以發明經術者也。 當是時,大昕為當代通儒第一,生平未嘗親許人,獨於銳則以為勝己。大昕嘗以太乙統宗寶鑒求積年術日法一萬五百歲,實三百八十三萬五千四十八分二十五秒為疑。銳據宋同州王湜易學,謂每年於三百六十五日二千四百四十分之外,有終於五分者,有終於六分者,有終於五六分之間者。終於五分者,五代王樸欽天曆是也,以七千二百為日法。終於六分者,近年萬分曆是也,以一萬分為日法。終於五六分之間者,景祐曆法載於太乙遁甲中是也,以一萬五百分為日法,此暗用授時法也。試以日法為一率,歲實為二率,授時日法一萬為三率,推四率,得三百六十五萬二千四百二十五分,即授時之歲實也。探本窮源,一言破的。 近世曆算之學,首推吳江王氏錫闡、宣城梅氏文鼎,嗣則休甯戴氏震亦號名家。王氏謂土盤曆元在唐武德年間,非開皇己未;梅氏謂回回曆實用洪武甲子為元,而讬之於開皇己未。其算宮分,雖以開皇己未為元,其查立成之根,則在己未元後二十四年,二說並同。 戴氏謂回回曆百二十八年閏三十一日,是每歲三百六十五日之外,又餘百二十八分日之三十一也。以萬萬乘三十一,滿百二十八而一,得二千四百二十一萬八千七百五十,地穀所定歲實三百六十五日二十三刻三分四十五秒,通分內子以萬萬乘之,滿日法而一,亦得二千四百二十一萬八千七百五十,與梅氏疑問所雲合。是三家所論,未嘗不確知灼見,然均未得其詳。銳據明史曆志、回回本術,參以近年瞻禮單,精加考核,謂回回曆有太陽年,彼中謂為宮分;有太陰年,彼中謂為月分。宮分有宮分之元,則開皇己未是也;月分有月分之元,則唐武德壬午是也。自開皇己未至洪武甲子,積宮分年七百八十六,自武德壬午至洪武甲子,積月分年亦七百八十六,其惑人者即此兩積年相等耳,因著回回曆元考。有求宮分白羊一日入月分截元後積年月日法,以為不明乎此,雖有立成,不能入算也。稿佚未刊。 梅氏未見古九章,其所著方程論,率皆以臆創補,然又囿于西學,致悖直除之旨。銳尋究古義,探索本根,變通簡捷,以舊術列於前,別立新術附於後,著方程新術草,以期古法共明於世。古無天元一術,其始見於元李冶測圓海鏡、益古演段二書,元郭守敬用之,以造授時曆草,而明學士顧應祥不解其旨,妄刪細草,遂致是法失傳。自梅文穆悟其即西法之借根方,於是李書乃得鄭重於世。其有原術不通,別設新術數則,更于梅說外辨得天元之相消,有減無加,與借根方之兩邊加減法少有不同。 且不滿顧氏所著之句股、弧矢兩算術,謂:「弧矢肇于九章方田,北宋沈括以兩矢冪求弧背,元李冶用三乘方取矢度,引伸觸類,厥法綦詳。顧氏如積未明,開方徒衍,不亦傎乎?」爰取弧矢十三術,入以天元,著弧矢算術細草。並仿演段例,括句股和較六十餘術,著句股算術細草,以導習天元者之先路。 又從同裡顧千里處得秦九韶數學九章,見其亦有天元一之名,而其術則置奇於右上,定於右下,立天元一于左上。先以右上除右下,所得商數與左上相生,入于左下。依次上下相生,至右上末後奇一而止,乃驗左上所得以為乘率。與李書立天元一於太極上,如積求之,得寄左數與同數相消之法不同。因知秦書乃大衍求一中之又一天元,秦與李雖同時,而宋元則南北隔絕,兩家之術,無緣流通,蓋各有所授也。 銳嘗謂:「四時成歲,首載虞書,五紀明曆,見於洪範。曆學誠致治之要,為政之本。乃通典、通考置而不錄,邢雲路雖撰古今律曆考,然徒援經史,以侈卷帙之多。梅氏祗有欲撰曆法通考之議,卒未成書。因更網羅諸史,由黃帝、顓頊、夏、殷、周、魯六曆,下逮元、明數十餘家,一一闡明義蘊,存者表而章之,缺者考而訂之,著為司天通志,俾讀史者啟其扃,治曆者益其智。」惜僅成四分、三統、乾象、奉天、占天五術注而已。余與開方說皆屬稿未全。 開方說三卷,銳讀秦氏書,見其于超步、退商、正負、加減、借一為隅諸法,頗得古九章少廣之遺,較梅氏少廣拾遺之無方廉者,不可以道裡計。蓋梅氏本于同文算指、西鏡錄二書,究出自西法,初不知立方以上無不帶從之方。銳因秦法推廣詳明,以著其說。甫及上、中二卷而卒,年四十有五。其下卷則弟子黎應南續成之。 應南,字見山,號鬥一,廣東順德人。嘉慶戊寅順天經魁,以書館議敘,選浙江麗水縣知縣,調平陽縣知縣。海疆俸滿,加六品銜,卒於官。 |
學達書庫(xuoda.com) |
上一頁 回目錄 回首頁 下一頁 |